domingo, 5 de abril de 2009

Arboles


ARBOLES


Definición:
Un Árbol Binario es un conjunto de finito de Elementos, de nombre Nodos de forma que:
El Árbol Binario es Vació si no tiene ningún elemento en el.
El Árbol Binario contiene un Nodo Raíz y los dos que parten de él, llamados Nodo Izquierdo y Nodo Derecho.
Los Árboles tiene 3 Recorridos Diferentes los cuales son:
Pre-Orden
In-Orden
Post-Orden
Pre-Orden
Definición:
El Recorrido “Pre-Orden” lo recorre de la siguiente manera, viaje a través del Árbol Binario desplegando el Contenido en la Raíz, después viaje a través del Nodo Izquierdo y después a través del Nodo Derecho.
Detalle:
Temp toma el Valor de la Raíz y compara si el Árbol tiene algún Elemento, de otra manera Desplegara “Árbol Vació…” y terminara el método. Si el Árbol tiene elementos dentro de él, lo recorrerá y viajara a través de los Arreglos Izq y Der para determinar que valor meter en la Pila y en Temp para de esta manera imprimir el siguiente Elemento correspondiente.
Algoritmo:
PreOrd(Arbol, Der, Izq, Pila, Raiz)
Temp → Raiz
Top →
Pila[Top] → Nulo
Si Raiz = Nulo
Imprimir “Árbol Vació…” y Salir
Repetir mientras Temp ≠ Nulo
Imprimir Arbol[Temp]
Si Der[Temp] ≠ Nulo
Top → Top + 1
Pila[Top] → Der[Temp]
Si Izq[Temp] ≠ Nulo
Temp → Izq[Temp]
Si no:
Temp → Pila[Top];
Top → Top - 1
Fin del ciclo
Salir


In-Orden
Definición:
El Recorrido “In-Orden” lo recorre de la siguiente manera, viaje a través del Árbol Binario desplegando el Contenido en el Nodo Izquierdo después la Raíz y finalmente viaja a través del Nodo Derecho.
Detalle:
Temp toma el Valor de la Raíz y compara si el Árbol tiene algún Elemento, de otra manera Desplegara “Árbol Vació…” y terminara el método. Si el Árbol tiene elementos dentro de él, lo recorrerá y viajara a través de los Arreglos Izq y Der para determinar que valor meter en la Pila y en Temp para de esta manera imprimir el siguiente Elemento correspondiente.
Algoritmo:
PreOrd(Arbol, Der, Izq, Pila, Raiz)
Temp → Raiz
Top →
Pila[Top] → Nulo
Si Raiz = Nulo
Imprmir “Arbol Vacio…” y Salir
Etiqueta:
Mientras Temp ≠ Nulo
Top → Top + 1
Pila[Top] → Temp
Temp → Izq[Temp]
Fin del ciclo
Temp → Pila[Top]
Top → Top - 1
Mientras Temp ≠ Nulo
Imprimir Arbol[Temp]
Si Der[Temp] ≠ Nulo
Temp → Der[Temp]
Ir a Etiqueta
Temp → Pila[Top]
Top → Top - 1
Fin del ciclo
Salir


In-Orden
Definición:
El Recorrido “In-Orden” lo recorre de la siguiente manera, viaje a través del Árbol Binario desplegando el Contenido en el Nodo Izquierdo después el Nodo Derecho y finalmente viaja a través de la Raiz.
Detalle:
Temp toma el Valor de la Raíz y compara si el Árbol tiene algún Elemento, de otra manera Desplegara “Árbol Vació…” y terminara el método. Si el Árbol tiene elementos dentro de él, lo recorrerá y viajara a través de los Arreglos Izq y Der para determinar que valor meter en la Pila y en Temp para de esta manera imprimir el siguiente Elemento correspondiente.
Algoritmo:
PostOrd(Arbol, Der, Izq, Pila, Raiz)
Temp → Raiz
Top →
Pila[Top] → Nulo
Si Raiz = Nulo
Imprimir “Arbol Vacio…” y Salir
Etiqueta:
Mientras Temp ≠ Nulo
Top → Top + 1
Pila[Top] → Temp
Si Der[Temp] ≠ Nulo
Top → Top + 1
Pila[Top] → - (Der[Temp])
Temp → Izq[Temp]
Temp → Pila[Top]
Top → Top - 1
Fin del ciclo
Mientras Temp ≥ 0
Imprimir Arbol[Temp]
Si Arbol[Temp] = Info[Raiz]
Salir
Temp → Pila[Top]
Top → Top - 1
Fin del ciclo
Si Temp < temp =" -(Temp)">

1 comentario:

  1. amor solo cortas y pega mmmm pero linda cara si tienes por si acaso te dejo mi correo sonwil2011@hotmail.com y mi web http://futboldirectohd.blogspot.com/
    si necsitas ayuda en esto de la programacion escribeme ok :)

    ResponderEliminar